Robust Multigrid Techniques for Augmented Lagrangian Preconditioning of Incompressible Stokes Equations with Extreme Viscosity Variations

نویسندگان

چکیده

We present augmented Lagrangian Schur complement preconditioners and robust multigrid methods for incompressible Stokes problems with extreme viscosity variations. Such systems arise, instance, upon linearization of nonlinear viscous flow problems, they can have severely inhomogeneous anisotropic coefficients. Using an formulation the incompressibility constraint makes easier to approximate but results in a nearly singular (1,1)-block system. eigenvalue estimates quality approximation. To cope near-singularity (1,1)-block, we extend scheme discretization-dependent smoother transfer operators from triangular/tetrahedral quadrilateral/hexahedral finite element discretizations $[\mathbb{Q}_k]^d\times \mathbb{P}_{k-1}^{\text{disc}}$, $k\geq 2$, $d=2,3$. numerical examples scalar fourth-order tensor arising viscoplastic constitutive relation, confirm robustness overall efficiency solver. scalability using up 28,672 parallel tasks 1.6 billion unknowns contrast ten orders magnitude.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Preconditioning the incompressible Navier-Stokes equations with variable viscosity

This paper deals with preconditioners for the iterative solution of the discrete Oseen’s problem with variable viscosity. The motivation of this work originates from numerical simulations of multiphase flow, governed by the coupled Cahn-Hilliard and incompressible Navier-Stokes equations. The impact of variable viscosity on some known preconditioning technique is analyzed. Numerical experiments...

متن کامل

Augmented Lagrangian Preconditioners for the Incompressible Navier-Stokes Equations

SUMMARY We study different variants of the augmented Lagrangian-based block triangular preconditioner introduced by the first two authors in [SIAM J. The preconditioners are used to accelerate the convergence of the Generalized Minimal Residual (GMRES) method applied to various finite element and MAC discretizations of the Oseen problem in two and three space dimensions. Both steady and unstead...

متن کامل

Incomplete Augmented Lagrangian Preconditioner for Steady Incompressible Navier-Stokes Equations

An incomplete augmented Lagrangian preconditioner, for the steady incompressible Navier-Stokes equations discretized by stable finite elements, is proposed. The eigenvalues of the preconditioned matrix are analyzed. Numerical experiments show that the incomplete augmented Lagrangian-based preconditioner proposed is very robust and performs quite well by the Picard linearization or the Newton li...

متن کامل

Robust Multigrid Algorithms for the Incompressible Navier-Stokes Equations

Anisotropies occur naturally in CFD where the simulation of small scale physical phenomena, such as boundary layers at high Reynolds numbers, causes the grid to be highly stretched leading to a slow down in convergence of multigrid methods. Several approaches aimed at making multigrid a robust solver have been proposed and analyzed in literature using the scalar diffusion equation. However, the...

متن کامل

Analysis of Augmented Lagrangian-Based Preconditioners for the Steady Incompressible Navier-Stokes Equations

We analyze a class of modified augmented Lagrangian-based preconditioners for both stable and stabilized finite element discretizations of the steady incompressible Navier–Stokes equations. We study the eigenvalues of the preconditioned matrices obtained from Picard linearization, and we devise a simple and effective method for the choice of the augmentation parameter γ based on Fourier analysi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: SIAM Journal on Scientific Computing

سال: 2022

ISSN: ['1095-7197', '1064-8275']

DOI: https://doi.org/10.1137/21m1430698